¢ëãåâñá  

´ Ãåíéêïý Ëõêåßïõ - Åõðáëßïõ

ÊáèçãçôÞò: ÌÁÍÙËÇÓ Êùíóôáíôßíïò

5.2  ËïãÜñéèìïé

ÅéóáãùãÞ

Áí  θ  åßíáé Ýíáò èåôéêüò áñéèìüò êáé   0 < α 1 ôüôå ç åîßóùóç   α x = θ   Ý÷åé ìïíáäéêÞ ëýóç (ãéáôß ç åêèåôéêÞ óõíÜñôçóç   f   ìå   f ( x ) = α x   åßíáé  " "1-1" "  êáé ï  θ  áíÞêåé óôï óýíïëï ôéìþí ôçò).

Ôç ìïíáäéêÞ áõôÞ ëýóç ôç óõìâïëßæïõìå   log α θ   êáé ôçí ïíïìÜæïõìå ëïãÜñéèìï ôïõ  θ  ìå âÜóç  α.

¸ôóé Ý÷ïõìå ôïí ïñéóìü ëïãáñßèìïõ:

ÏíïìÜæïõìå ëïãÜñéèìï ôïõ èåôéêïý áñéèìïý  θ  ìå âÜóç  α   ( 0 < α 1 )   ôïí åêèÝôç óôïí ïðïßï ðñÝðåé íá õøþóïõìå ôïí  α  ãéá íá âñïýìå ôï  θ.

¢ñá:

α x = θ x = log α θ

ÐáñÜäåéãìá

log 2 32 = 5 ãéáôß 2 5 = 32

ÐáñáôçñÞóåéò:

Áí   0 < α 1 , θ > 0   êáé   x   ôüôå áðü ôïí ïñéóìü ôïõ ëïãáñßèìïõ ðñïêýðôïõí ïé ó÷Ýóåéò:

log α α x = x α log α θ = θ log α α = 1 log α 1 = 0 θ 1 = θ 2 log α θ 1 = log α θ 2

Éäéüôçôåò ôùí ëïãáñßèìùí

Áí   0 < α 1 ,   ôüôå ãéá ïðïéïõóäÞðïôå èåôéêïýò áñéèìïýò   θ 1 , θ 2 , θ   êáé   κ   éó÷ýïõí:

1. log α ( θ 1 θ 2 ) = log α θ 1 + log α θ 2

2.   log α θ 1 θ 2 = log α θ 1 - log α θ 2

3.   log α θ κ = κ log α θ

Ðüñéóìá

Áí   0 < α 1 , θ > 0   êáé   ν *   ôüôå:

log α θ ν = 1 ν log α θ
Óçìåßùóç

Ïé ÷ñçóéìïðïéïýìåíåò âÜóåéò ôùí ëïãáñßèìùí åßíáé óõíÞèùò ôï  10  êáé ôï   .

Ïé ëïãÜñéèìïé ìå âÜóç ôï  10  ëÝãïíôáé äåêáäéêïß Þ  êïéíïß ëïãÜñéèìïé êáé óõìâïëßæïíôáé ìå   logθ   áíôß ôïõ   log 10 θ .
¢ñá:  

logθ = x 10 x = θ

Ïé ëïãÜñéèìïé ìå âÜóç ôï  ⅇ  ëÝãïíôáé öõóéêïß  Þ  íåðÝñéïé ëïãÜñéèìïé êáé óõìâïëßæïíôáé ìå   lnθ   áíôß ôïõ   log θ .
¢ñá:  

lnθ = x x = θ
Ðñüôáóç (Ôýðïò áëëáãÞò âÜóçò)

Áí   0 < α 1   êáé   0 < β 1 ,   ôüôå ãéá êÜèå èåôéêü áñéèìü  θ  éó÷ýåé:

log β θ = log α θ log α β

Áðü ôïí ðáñáðÜíù ôýðï ðñïêýðôïõí ôá åîÞò:

•  Ç áëëáãÞ ôçò âÜóçò óôïõò äåêáäéêïýò ëïãÜñéèìïõò äßíåôáé áðü ôïí ôýðï:

log β θ = log θ log β

•  Ç áëëáãÞ ôçò âÜóçò óôïõò öõóéêïýò ëïãÜñéèìïõò äßíåôáé áðü ôïí ôýðï:

log β θ = ln θ ln β

ÁóêÞóåéò

0.  Íá õðïëïãéóôïýí ïé ëïãÜñéèìïé:

á)   log 4 16                    â)   log 1 2 32                                   ã)   log 2 1 8
0.  Íá õðïëïãéóôïýí ïé ëïãÜñéèìïé:

á)   log 3 1 3                                       â)   log 1 2 64                                   ã)   log 9 3
0.  Íá õðïëïãéóôïýí ïé ëïãÜñéèìïé:

á)   log 9 27                                    â)   log 3 1 27                                   ã)   log 4 2
0.  Íá õðïëïãéóôïýí ïé ëïãÜñéèìïé:

á)   log 4 32                                       â)   log 0.1 100                                ã)   log 8 2 4
0.  Íá õðïëïãéóôïýí ïé ëïãÜñéèìïé:

á)   log 2 1 2                                       â)   log 5 125                                   ã)   log α α 3
0.  Íá õðïëïãéóôïýí ïé ëïãÜñéèìïé:

á)   log 1 9 3 3                                  â)   log 0.2 625                                ã)   log 10 10
0.  Áí   log 3 2 = α ,   íá õðïëïãßóåôå ôïí log 8 12.
0.  Íá âñåèåß ï ðñáãìáôéêüò áñéèìüò   x   áí:

á)   log 9 x = 1 2                                â)   log x 27 = 3                              ã)   log x 5 = 1 4
0.  Íá âñåèåß ï ðñáãìáôéêüò áñéèìüò   x   áí:

á)   log x 4 = 2                                  â)   log x 8 = 3                            ã)   log 1 2 x = 2
0.  Íá âñåèåß ï ðñáãìáôéêüò áñéèìüò   x   áí:

á)   log 3 x = 4                                  â)   log x = - 1                                ã)   ln x = 2
0.  Íá âñåèåß ï ðñáãìáôéêüò áñéèìüò   x   áí:

á)   log x = 1 3                                  â)   log 27 x = 1 3                            ã)   ln x =
0.  Íá âñåèåß ï ðñáãìáôéêüò áñéèìüò   x   áí:

á)   log 2 x = 6                              â)   log 3 x 2 = 4                        ã)   log 4 9 ( x - 1 x ) = - 1 2
0.  Íá âñåèåß ï ðñáãìáôéêüò áñéèìüò   x   áí:

á)   log x 1000 = - 6                          â)   log x 16 = 2 3                          ã)   log x 16 81 = 4
0.  Íá âñåèåß ï ðñáãìáôéêüò áñéèìüò   x   áðü ôéò ðáñáêÜôù ó÷Ýóåéò:

á)   log 1 9 3 3 = x                            â)   log 0.1 100 5 = x                   ã)   log x 27 = 3 2
0.  Íá âñåèåß ï ðñáãìáôéêüò áñéèìüò   x   áðü ôéò ðáñáêÜôù ó÷Ýóåéò:

á)   log x 4 = - 3 2                              â)   log 8 x = - 1 3                          ã)   log 4 ( log x 25 ) = 1 2
0.  Íá õðïëïãéóôåß ï   x   üôáí éó÷ýåé:

á)   5 x = 5                     â)   ln x = 3                          ã)   log x 4 = x                      ä)   log x 2 x = 2
0.  Íá åöáñìüóåôå üëåò ôéò éäéüôçôåò ôùí ëïãáñßèìùí:

á)   log 3 3 α 6 β γ                              â)   log 10 α 2 β 3 3 β 2                          ã)   log 100 10 α 2 β
0.  Íá âñåèåß ï áêÝñáéïò áñéèìüò   x   Ýôóé þóôå íá Ý÷ïõí Ýííïéá óôï  χ΅  ôá óýìâïëá:

á)   log x ( 2 - | x | )                             â)   log x 1 + x 5 - x                                 ã)   log 2 x x + 1 3 - x
0.  Äåßîåôå üôé:

á)   2 log2 + 3 log3 - log12 = 2 log3          

â)   1 2 log16 + 1 3 log8 + 1 4 log81 = 3 log2 + log3
0.  Íá áðïäåßîåôå üôé:

á)   3 log 3 2 + 2 log 3 6 - log 3 32 = 2                                â)   2 + 3 log 5 2 - 2 log 5 10 = log 5 2
0.  Äåßîåôå üôé:   

log 6 ( 12 + 6 3 ) + 2 log ( 3 - 3 ) = 2          
0.  Äåßîåôå üôé:    log2 + log ( 3 + 1 ) + log ( 1 + 2 - 3 ) + log ( 1 - 2 - 3 ) = 2 log2          
0.  Äåßîåôå üôé:    1 + log 3 5 - 2 log 3 10 4 = 1 + log 3 2          
0.  Äåßîôå üôé:    3 log 3 8 - log 3 2 = 4
0.  Íá õðïëïãéóôåß ç ðáñÜóôáóç:    Á = log 2006 [ log 5 ( log 2 32 ) ]
0.  Íá õðïëïãßóåôå ôçí ðáñÜóôáóç:    Á = 100 1 2 - log 4 4
0.  Íá áðïäåßîåôå üôé:

á)   10 3 log2 + log5 - 1 = 4                                                    â)   100 1 - 1 4 log25 = 20
0.  Áí   log 2 x = α , log 2 y = β    êáé    log 2 ω = γ   íá õðïëïãßóåôå ôïõò:

á)   log 2 x 2 y 4 ω                                                             â)   log 2 x y 3

ã)   log 4 ( 32 x 3 y 2 ω )                                                        ä)   log 1 2 ( ( x + y ) 2 - ( x - y ) 2 )
0.  Áí   log2 = α , log3 = β    íá âñåèïýí ïé ëïãÜñéèìïé ôùí áñéèìþí:      4 , 5 , 6 , 12 , 15 , 30 , 36 , 72 50 .
0.  Íá áðïäåßîåôå üôé:

á)   1 2 log25 + 1 3 log8 + 1 5 log32 = 1 + log2

â)   log 2 3 · log 3 4 · log 4 5 · log 5 6 · log 6 7 · log 7 8 = 3
0.  Äåßîôå üôé:

á)   7 16 log ( 3 + 2 2 ) - 4 log ( 2 + 1 ) = 25 8 log ( 2 - 1 )

â)   log2 + log ( 2 + 2 ) + log ( 2 + 2 + 2 ) + log ( 2 - 2 + 2 ) = 2 log 2
0.  Äåßîôå üôé:    log9 · log 4 10 log 4 3 = 2
0.  Íá áðïäåé÷èïýí ïé éóüôçôåò:  á)   log 2 5 · log 25 8 = 3 2               â)   log 5 7 · log 7 5 = 1
0.  Áí   log 4 3 = α    êáé    log 4 5 = β    íá õðïëïãéóôåß óõíáñôÞóåé ôùí   α , β   ï   log 16 15.
0.  Áí   log 5 α + log 5 ( log 5 α ) = 1    ôüôå äåßîôå üôé:   α = 5.
0.  Áí   log α ( 2 α 2 - 5 α + 6 ) = 2    ôüôå äåßîôå üôé:   α = 2   Þ   α = 3.
0.  Áí   α > 0 , 0 < β 1   êáé   μ 0 ,   äåßîôå üôé:   log β μ = ν μ log β α .
0.  Áí   log α β = log β γ · log γ α ,   äåßîôå üôé:   α = β   Þ   αβ = 1
0.  Áí   1 log 2 α + 1 log x α + 1 log y α = 0 ,    äåßîåôå üôé:    x y = 1 2
0.  Áí   log ( x 3 y 2 ) = α   êáé   log x y = β ,   íá âñåßôå óõíáñôÞóåé ôùí   α , β   ôïõò   x , y .
0.  Íá áðïäåßîåôå üôé:

á)    log β α = 1 log α β        

â)   1 log 2 α + 1 log 3 α = 1 log 6 α

ã)   1 log 2 α + 1 log 3 α + + 1 log ν α = 1 log ν ! α
0.  Äåßîôå üôé ïé èåôéêïß áñéèìïß   α , β , γ   åßíáé äéáäï÷éêïß üñïé ãåùìåôñéêÞò ðñïüäïõ üôáí êáé ìüíï üôáí ïé áñéèìïß   logα , logβ , logγ   åßíáé äéáäï÷éêïß üñïé áñéèìçôéêÞò ðñïüäïõ.


Converted by Mathematica      April 11, 2013